迷路にQ学習を使ってみた

お久しぶりです.ユーザ名を今回から Twitter に合わせて TRSasasusu にしました.

記事にできるような活動があまりできなかったため,気がついたら前回の何か作った系の投稿から7ヶ月も経ってしまいました.今回の投稿は去年UMU氏が投稿したものを大いに参考にしています.(というか,ほぼ同じ.違う点は迷路が大きくなったことくらい)

Q学習は


$$ Q(S_t, A_t) = Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_{a’ \in A(s’)} Q(S_{t+1}, a’) – Q(S_t, A_t)) $$

に従って行動価値関数を更新します.そもそも行動価値関数とは,といったことはこちらもUMU氏がまとめてくださっています.ありがとうございます.

方策決定には ε を固定した ε-greedy 法を用いています.これにより局所解を抜け出せるようにします.パラメータについては,


$$ \varepsilon = 0.1 $$
$$ 学習率\ \alpha = 0.1 $$
$$ 割引率\ \gamma = 0.9 $$

としています.

やっぱり途中で戻ったりするようになってしまいますね…何ででしょうね.

あと,Pygame 便利ですね.

今回のスクリプト(q_maze2.py, moyf/ml/rl/q.py)

Posted on: 2017年8月3日, by : TRSasasusu
Exit mobile version